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ABSTRACT: We have previously described a computational approach to modeling human performance, built using 
the Apex architecture [1],in which extended behavioral sequences are automatically constructed from simpler CPM-
GOMS templates [2]. Here we report on efforts to extend that method to the more complex domain of air traffic control 
operations. We describe the overall approach and our initial analysis of patterns of human performance observed in a 
simulation of air traffic control operations conducted by the Federal Aviation Administration. Of particular interest 
are patterns that characterize how operators manage multiple tasks, and distribute their attention over items. We 
show how templates in our compositional approach might be structured to accommodate these patterns.  
 
 
1. Introduction 
 
Despite advances in automation, the human operator 
retains a pivotal role in challenging domains, such as air 
traffic control or air combat operations. The human 
operator brings a flexibility, adaptability, and 
resourcefulness unmatched by current automation. 
Unfortunately, human performance limitations are often 
a constraint on system performance, as well as a source 
of error. For example, the speaking rate of air traffic 
controllers can be the primary factor limiting throughput 
at peak periods for several hub airports, and memory 
failures have been implicated in airline accidents. 
Therefore, overall system performance must be 
considered with respect to human performance 
characteristics.  
 
When designing new systems, or modifying existing 
systems, it would be useful then to be able to anticipate 
the response of the user before committing large 
resources in development. Our current methods for this 
have limitations. Even extended empirical user testing 
can fail to uncover serious difficulties. Such limitations 
have contributed to the interest in computational 
representations of the user that would allow the 
designer to simulate user responses to a variety of 
situations and design options. Though a complete 

model of the user is beyond current capability, several 
computational modeling approaches have been 
successful in making accurate predictions of user 
choices as well as task completion times [3-7]. Of the 
several architectures available to model human users, 
the Goals, Operators, Methods, and Selection (GOMS) 
method [3] has been the most widely used. A variant of 
GOMS, called CPM-GOMS has been shown to provide 
accurate, often zero-parameter, predictions of the 
routine performance of skilled users in procedural tasks 
[8].  
 
In CPM-GOMS, as in the standard GOMS, a task is 
recursively decomposed from an initial Go al state into a 
nested set of subgoals. The user is assumed to have 
Methods that apply sequences of Operators that 
transition between subgoals to achieve the Goal. 
Selection rules are applied when there is more than one 
method to achieve a goal. In a standard GOMS analysis 
this task decomposition terminates in task-level 
primitives of any desired granularity. For example, a leaf 
node operator of a GOMS model of an air traffic 
controller might be to issue a clearance. In contrast, 
CPM-GOMS continues the decomposition, terminating 
in operators at the level of elementary human mental 
processes: Cognition, Perception, and Motor (hence 
“CPM”). One advantage of this is that leaf nodes at the 



CPM level are constant across situations. Thus, it may 
be possible to achieve some domain generality by 
modeling at this level. Another advantage, which 
contributes significantly to the accuracy of prediction, 
is that this level of representation allows one to 
represent the parallelism that characterizes skilled 
behavior. In a standard GOMS representation, for 
example, performance times are computed by summing 
together individual leaf-node operator times. In CPM-
GOMS, by contrast, Cognitive, Perceptual, and Motor 
processors can execute in parallel, which enables 
overlapping of the subcomponents of successive tasks. 
 
1.1 Automating CPM-GOMS Modeling in Apex 
 
A serious drawback to CPM-GOMS is the difficulty of 
constructing models at this level of detail. We have 
discussed this problem at length elsewhere and 
described success in automating the process using the 
Apex computational architecture [1, 2, 9]. Briefly, the 
implementation in Apex automates the sequencing of 
behavioral templates. Templates are psychological 
models of elementary behaviors in the task domain. For 
example, we have built templates for moving and 
clicking a mouse, for speaking, for typing, and other 
common behaviors. Each template consists of a 
sequence of Cognitive, Perceptual, and Motor 
operators that describe the putative internal operations 
required to perform the action. Operators in template are 
capable of executing in parallel subject to constraints. 
We have described elsewhere [9] how resource, logical, 
and slack-exclusion constraints are applied to determine 
the schedule of operations within a template.  
 
By describing elementary behaviors common across 
task domains templates form an important bridge 
between the task domain and the underlying human 
performance architecture. Because templates represent 
activities common to many interfaces it should be 
possible to construct libraries of templates that can be 
applied in different circumstances. Because templates 
describe task-level activities it should be possible to 
model behavior without a deep understanding of 
cognitive psychology. That is, the psychology is  
embedded in the templates, and the description in the 
templates is sufficient for Apex, or other architectures 
to automatically interweave templates to form extended 
behavioral sequences. Indeed, the approach of 
composing behavior from template-level building blocks 
allows the modeler to use existing methods that analyze 
tasks by hierarchical decomposition, with templates as 
the leaf node operators.  
 
1.2 Modeling Air Traffic Control 
 
We have shown that this compositional approach can 

predict performance on routine, well-practiced tasks 
such as withdrawing a fixed amount of money from an 
automated teller machine, typing and mousing to 
interact with a computer-aided-design application, and 
in simple text editing. These are the domains in which 
CPM-GOMS has proven successful in past. In these 
tasks, users are highly practiced, and data is usually 
taken between 50 - 100 trials. At this level of practice 
the tasks are highly perceptual-motor in character and 
show the power of the CPM-GOMS method for 
capturing the peak performance of users. 
 
The automation of CPM-GOMS in Apex for the first 
time allows us to address performance in more complex 
domains. We use complex loosely to describe a domain, 
such as air traffic control, where events are only quasi-
predictable, people must juggle multiple tasks, and 
interruptions are present. Prior to the automation of 
CPM-GOMS it would have been far too labor intensive 
and error prone to begin to address domains such as air 
traffic control.  
 
1.3 Extension to Complex Domains 
 
A CPM-GOMS template provides a simplified 
characterization of human performance in terms of a 
schedule of limited resources. This fits well with Apex, 
which models an agent making decisions about how to 
allocate limited resources. A key question as we extend 
the approach to complex domains is whether we can 
retain the simplicity of this level of description, or 
whether it will be necessary to introduce more 
complicated architectural mechanisms to deal with 
knowledge and semantics. Behavior in domains such as 
air traffic control is characterized as a mixture of 
performance levels: skill, procedural, and knowledge. 
Because the description at the level of resources 
provides insight into issues such as workload and 
throughput, we wish to retain this essential character of 
CPM-GOMS. To extend the template approach it is 
necessary to identify those portions of the behavioral 
stream that contain routine behavior, and construct 
templates to model performance.  
 
We have recently made progress on two major issues 
with respect to this extension. First, we have modified 
the Apex computational architecture to interact with 
external simulations. The advantage of this is that it 
allows us to leverage existing domain simulations, and 
provides an outlet for Apex models in the engineering 
community. Second, we have constructed templates for 
handoff operations based on task analyses. We have 
recently received data from simulations both of air 
traffic control and of shuttle cockpit operations. These 
data provide detail on external events, operator 
communications, operator actions, and operator eye 



fixations at 60 Hz resolution. Below we describe how 
Apex interacts with external simulations, and describe 
our existing handoff model and compare it to data from 
the simulation. We also some features of the data that 
suggest ways in which to extend the template approach. 
 
2. Integrating Apex with an External 
Simulation 
 
Our air traffic control modeling supports the Virtual 
Airspace Modeling and Simulation (VAMS) project, a 
joint NASA and FAA effort. VAMS is developing the 
modeling and simulation infrastructure that would allow 
the effect of proposed changes to airspace operations 
to be evaluated early in the concept phase. The 
principal criteria for the evaluation are capacity 
(throughput) and safety. VAMS has developed a new 
airspace simulation system, ACES. ACES is a 
distributed agent-based event-driven simulation for the 
analysis of the NAS supporting common 
communications protocols. For the distributed 
simulation, ACES uses the High-Level Architecture 
(HLA) standard developed by the US Department of 
Defense (DOD) and the Run-Time Interface (RTI) 
available from the Defense Modeling and Simulation 
Office (DMSO). ACES provides key agent models for 
the NAS simulation, including aircraft, airport, Terminal 
Radar Approach Control (TRACON), Air Route Traffic 
Control Center (ARTCC), Airline Operations Center 
(AOC), and weather. These different types of agents are 
interacting with each other through message passing 
during the simulation. ACES models the dynamic 
behavior of different aircraft types, as well as the 
procedures and communications agents such as aircraft 
and air traffic control. In its current build, ACES 
represents agents at a level that abstracts over 
individual humans and human-system interfaces. Since 
an important goal for us is to evaluate such interfaces, 
we model the entire joint human-system, and use the 
combined output to control an ACES agent. 
 
To introduce human behavior into the simulation we 
developed a simple Apex human agent model that 
simulates the functions of individual air traffic 
controller. One of challenges was to integrate the two 
different simulation systems to run seamlessly together. 
Apex is written in Lisp while ACES is a Java-based 
simulation system using HLA protocols. To enable 
communication between the two systems we developed 
communications interfaces and protocols using 
sockets. The Apex agent communicates with ACES 
agents through a TCP/IP socket channel as shown 
Figure 1. Conceptually, ACES is the direct link to all 
simulation objects. Apex interprets the simulation world 
and controls aircraft, as a human controller does. As a 
result, the Apex-ACES Interface (AAI) translates 

simulated displays and vehicle information into the 
representation used by Apex and translates Apex’s 
action representation into ACES function calls (e.g., to 
control the vehicle and to manipulate sensors, radios, 
and displays). To control the vehicle’s motion Apex 
issues output commands to a corresponding ACES 
agent. AAI converts the output commands to 
OpenCybele message format, which can then be 
interpreted by other agents in the simulation. Currently, 
control of a vehicle occurs through setting the desired 
state of the vehicle such as its speed, heading, and 
altitude. 
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Figure 1. Integration of Apex into ACES  

 
Apex is used to model both the human agent and the 
displays and controls the agent interacts with. In this 
way, timing of agent actions and delays imposed by the 
equipment and user interface can be simulated at high 
fidelity. Communication with the ACES simulation 
currently occurs at synchronized message passing 
times in accordance with ACES protocols. This 
arrangement is depicted in Figure 1. This scheme 
provides a natural division between the human 
performance model and the ACES-level agent. The 
ACES incorporates objects that represent high-level 
agents. The Apex agent need only transmit to its ACES 
counterpart those messages of significance in the larger 
context. Thus, while each keystroke of data entry into 
flight computers must be simulated to predict the time, 
the ACES-level agent need only be informed when the 
keystrokes produce some change in the its state, such 
as activating a mode, or changing a control setting. 
More timely communications could be achieved using 
asynchronous message passing. ACES does not 
support asynchronous timing mechanisms. We are 
working on establishing this capability. 
 
3. A Simple Apex Model of Handoff 
 
Our Apex agent performs the functions of an air traffic 
controller responsible for traffic in a single enroute 
sector during routine operations. In routine operations, 



an enroute controller monitors the flights passing 
through the sector, responds to various pilot requests, 
and adjusts aircraft trajectories by instructing pilots to 
alter their aircraft speed, flight level, and heading in 
order to maintain safe and efficient flow of air traffic. 
Our goal is not to build an agent that correctly does air 
traffic control. Rather, it is to assess the demands of 
doing the work.  
 
Previous work has attempted to provide a more or less 
complete functional analysis of enroute control [10-12]. 
A high level functional analysis of a portion of current 
enroute control is shown in Figure 2. Each sector is 
managed by two controllers, the radar controller (R-
side) and the radar associate controller (D-side), whose 
duties complement and overlap. The R-side controller is 
the primary controller in contact with aircraft. The D-
side controller assists, sharing responsibility for 
conflict detection and planning, as well as performing 
routine housekeeping.  
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Figure 2. High-Level Tasks of Enroute Controllers 

 
As shown in Figure 2, the air traffic controller must 
handle multiple tasks, one or more of which may be 
active at any moment. The multitasking behavior of our 
Agent model is constrained by policy, by data, and by 
resources. Policy determines which tasks should be 
given priority. This is governed by domain knowledge 

in combination with the current context. Within the 
Apex agent, tasks only become active when the 
conditions (data) are present to activate them. Resource 
constraints in the agent’s architecture determine which 
task subelements can be done in parallel and which 
must wait for free resources. Tasks that require the 
same resources such as radio, trackball, or keyboard, 
can temporarily prevent parallel execution. In this way 
resources in our Apex controller agent capture 
capabilities and constraints on human behavior, which 
have consequences for overall performance. 
 
Typically R-Side controllers initiate handoff when an 
aircraft reaches a trigger location (e.g. 30nm from 
boundary of next sector) and the receiving controller 
accepts a handoff before an aircraft enters his sector. 
Once a handoff is accepted, the transferring controller 
issues a frequency change clearance before the aircraft 
leaves his control sector. The details of this Transfer of 
Communications (TOC) differ for voice or datalink, and 
this difference is of interest in assessing the impact of 
datalink. Then flight crew will tune new frequency and 
make an initial contact to receiving controller in next 
sector. Figure 3 shows the high-level tasks of 
controllers for initiating and receiving handoffs. 
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Figure 3. Task Analysis for a Handoff Task 

 
These task analyses are represented in GOMS as a 
hierarchy of nested goals. This hierarchical structure is 
expressed in Apex using its Procedure Description 
Language (PDL). PDL steps are decomposed 
hierarchically into procedures of simpler steps until 
those steps bottom out in primitive actions that occupy 



human resources. Figure 4 shows the top-level 
procedures. The index clause contains the name of the 
procedure and is used to locate the procedure in the 
procedure library. The air traffic control procedure 
consists of 5 steps, each of the procedures are executed 
when their conditions are met, as specified in the 
waitfor clause. In the case shown here, the 5 steps can 
execute in parallel and are assigned a priority, where the 
highest value has greater priority. Figures 5 & 6 show 
how the high-level PDL procedures for the handoff task 
that decompose successively until they bottom out into 
the primitive procedures shown in Figure 6. 
 

 
Figure 4. Top-Level Apex Procedures 

 

 
Figure 5. High-Level Handoff Procedures 

 
Figure 6. Primitive  Procedures 

 
4. Patterns of Controller Behavior 
 
We have recently received data from an air traffic 
control simulations provided by the Federal Aviation 
Administration. Our initial analysis  has focused on two 
areas that bear on the extension of our template 
approach. First we examine patterns of multitasking 
behavior to determine how to structure the procedures 
in the initial Apex model. Next we examine how the 
operator’s focus of attention is distributed over the 
aircraft in the sector. This will begin to tell us behavior 
patterns in routine behavior, and how factors that 
govern the selection of which task to work.  
 
4.1 Concurrent Task Management 
 
In Figure 4 we presented an initial high-level Apex 
procedure consisting of several tasks. Our assumption 
was that these tasks would be executed concurrently 
with dynamic priorities set by policy and practice. The 
data provide some insight into how controllers in this 
simulation actually managed these multiple tasks. 
 
Figure 7 plots the eye fixations and events associated 
with one specific aircraft, USA639, as a function of time 
in the simulation. Each of the data points represents a 
fixation on the aircraft or its data tag at that point in 
time, the vertical lines represent actions taken at 
specific times. Eye fixations for two other aircraft, 
BTA5093 and AAL904, are also plotted. The sequence 
of actions associated with USA693 illustrates the 
responsibilities and functions of the controller 
consistent with our initial model taken from the task 
analysis. 

(procedure 
 (index (do-domain)) 
 (step s (air traffic control)) 
 (step t (end-of-simulation) (waitfor (end-sim-signal))) 
 
 (procedure 
 (index (air traffic control)) 
 (step s1 (monitor radar) (priority 0)) 
 (step s2 (initiate handoff for ?ac-symbol)  
               (waitfor (initiate-handoff ?ac-symbol)) 
               (period :recurrent :reftime enabled) (priority 4)) 
 (step s3 (receive handoff request for ?ac-symbol)  
               (waitfor (receive-handoff ?ac-symbol)) 
               (period :recurrent :reftime enabled) (priority 2)) 
 (step s4 (detect metering violation for ?ac-symbol)  
               (waitfor (detect -metering-violation ?ac-symbol))              
               (period :recurrent :reftime enabled) (priority 6)) 
 (step s5 (detect conflicts and resolution for ?ac-1 and ?ac-
2)  
               (waitfor (detect -conflict ?ac-1 and ?ac-2))  
               (period :recurrent :reftime enabled) (priority 8))) 

(procedure  
 (index (detect initiating handoff ?aircraft)) 
 (step s1 (decide whether to initiate handoff ?aircraft)) 
 (step s2 (initiate handoff ?aircraft to next controller) 
               (waitfor ?s1)) 
 (step s3 (monitor response from receiving controller)   
               (waitfor ?s2)) 
 (step s4 (issue frequency change to pilot) (waitfor ?s3)) 
 (step s5 (mark ac shipped)  
               (waitfor ?s4 (pilot readback))) 
 (step done  (terminate) (waitfor ?s5))) 
 
(procedure 
 (index (receive handoff request for ?ac-symbol)) 
 (step s1 (acquire sa for handoff ac)) 
 (step s2 (determine response) (waitfor ?s1)) 
 (step s3 (respond to initiating controller ?ac-symbol)    
               (waitfor ?s2)) 
 (step s4 (wait for initial contact from pilot)  
               (waitfor ?s3)) 
 (step done (terminate) (waitfor ?s4))) 
 

(procedure 
 (index (initiate handoff ?ac-symbol to receiving 
controller)) 
 (step s1 (move-cursor-to ?ac-symbol)) 
 (step s2 (click trackball on ?ac-symbol) (waitfor ?s1)) 
 (step done  (terminate) (waitfor ?s2))) 
 
(procedure 
 (index (move-cursor-to ?target)) 
 (profile right-hand) 
 (step s1 (trackball-time ?target => ?time)) 
 (step s2 (start -activity right-hand moving-ic-trackball 
     :object ?target :duration 
?time => ?a) 
       (waitfor ?s1)) 
 (step s3 (terminate) (waitfor (completed ?a)))) 
 
(procedure 
 (index (click trackball on ?target)) 
 (profile right-hand) 
 (step s1 (trackball-object => ?object)) 
 (step s2 (start -activity right-hand clicking-trackball  
             :object ?object :ac-symbol ?target :duration 200 => 
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Figure 7. Eye Fixations and Actions for USA639 

 
Because the time scale of 30 min is much greater than 
the typical fixation duration of about 300-500 ms, it may 
appear that at some points in time all three aircraft are 
being fixated simultaneously, when in reality controllers 
fixate aircraft serially. Serial behavior of this sort can 
still be considered multitasking. In some cases the 
individual behavioral elements can be related to multiple 
high-level tasks. For example, there is a conflict alert at 
about 1100 sec indicating a predicted conflict between 
USA6392 and BTA5093. The controller appears to be 
aware of that in advance given the high number of 
fixations on USA639 preceding the alert. Still, during 
that interval there are several fixations on AAL904, an 
aircraft not involved in the conflict, yet relatively few 
fixations on the other conflict aircraft BTA5093 until 
just prior to the alert. The fixations on AAL904 are likely 
related to a different set of high-level tasks than those 
associated with the conflict, and the controller shares 
monitoring resources with these ongoing tasks. The 
identification of multitasking cannot be made entirely 
based on concurrent execution but must consider the 
span of events or time represented in the working 
memory of the controller. 
 
Some idea of the multitasking load can be seen in Figure 
8, which plots the dwell times for each of a set of aircraft 
over a 5 min interval. Dwell times were computed by 
summing individual fixation durations on each aircraft 
over a 1 min span. If we assume that a fixation 
represents attentional resources being devoted to an 
aircraft, then over intervals of this  duration operators 
attend to 8-15 aircraft.  
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Figure 8.  Dwell Times on Indi vidual Aircraft 

 
Is it possible to identify episodes of true concurrency? 
It would be expected that when controllers were 
required to wait that they would attend to multiple 
aircraft and perhaps service other tasks. Unfortunately, 
the data do not contain the events needed to obtain 
such estimates. However, there are several instances 
where controllers conduct monitoring scans while 
giving vocal clearances. This is shown in Figure 9. Here 
the controller stars the utterance and while speaking 
fixates several aircraft. We see clear evidence that 
monitoring is conducted in parallel with other 
behaviors, probably as a routine background activity.  
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Figure 9. Concurrent Vocalization and Fixation 

 
Examples such as the one above show that when 
resource and logical constraints allow, true concurrent 
performance will be observed. It also points out the 
need for a well-specified resource architecture at the 
level of elementary mental operations. Without a 
detailed consideration of the cognitive, perceptual, and 
motor level of performance such concurrency could not 
be accounted for. 



4.2 The Focus of Attention 
 
In addition to data on the sharing of attention, Figure 8 
also shows how the focus of attention on any 
individual aircraft shifts as a function of time. For 
example, in the first minute two aircraft, AAL904 and 
AMT929, have long dwell times, which decrease over 
the five minute interval. We are currently working to 
relate these changes to specific operational situations 
or actions to determine patterns that exist that would 
inform us how to structure our domain-specific 
templates. 
 
Another way to track the focus of attention is to see 
how concentrated or dispersed it is  at any point in time. 
Figure 10 attempts to depict this by plotting three 
quantities as a function of time: the total number of 
aircraft, the number of different aircraft attended 
(fixated), and the total time spent looking at aircraft.  
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5. Summary 
 
We have described some preliminary steps in 
generalizing a template-based approach to modeling to 
complex domains. The model developed largely from 
task analyses is now being modified in response to 
patterns of data observed in a simulation. The data 
contain important observations of how controllers 
share tasks and how their focus of attention is directed 
by contextual information. Many of these features 
needed to handle these examples of multitasking were 
already incorporated into Apex. The simulations 
provide us with the content needed to determine how to 
use the existing functionality. At present the only 
outstanding issue is how to dynamically adjust 
priorities. We are currently running simulations to 
compare the performance of our model to observed 
results and refining the model.  
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